数列{an}的前n项和为Sn,若a1=3,Sn和{an}满足等式Sn+1=n+1nSn+n+1,(1)求S2的值;(2)求证:数列{Snn
数列{an}的前n项和为Sn,若a1=3,Sn和{an}满足等式Sn+1=n+1nSn+n+1,(1)求S2的值;(2)求证:数列{Snn
日期:2016-12-01 15:24:33 人气:1
解答:(1)解:由已知:S2=2S1+2=2a1+2=8…(2分)(2)证明:∵Sn+1=n+1nSn+n+1同除以n+1,可得Sn+1n+1-Snn=1…(4分)∴{Snn}是以3为首项,1为公差的等差数列.…(6分)(3)解:由(2)可知,Sn=n2+2n(n∈N*)…(8分)∴当n=1时,a1=3…(10分)当n≥2时,an=Sn-Sn-1=2n+1…(11分)经检验,当n=1时也成立∴an=2n+1(n∈N*)…(12分)