设三角形ABC的内角ABC的对边长分别为a,b,c,cos(A-C)+cosB=3/2,b^2=a
设三角形ABC的内角ABC的对边长分别为a,b,c,cos(A-C)+cosB=3/2,b^2=a
日期:2017-09-24 14:44:02 人气:1
cos(A-C)+cosB
=cos(A-C)-cos(A+C)
=cosAcosC+sinAsinC-cosAcosC+sinAsinC
=2sinAsinC
=3/2
即sinAsinC=3/4
根据正弦定理,
a/sinA=b/sinB=c/sinC=2R
b^2=sin^B*4R^2
a=sinA*2R c=sinC*2R
所以,sin^B=sinA*sinC=3/4
因为B<180
所以,sinB=√3/