设数列an的前n项和为Sn,已知a1=1,(2Sn)/n=a(n+1)-1/3n^2-n-2/3,

日期:2018-01-10 21:34:40 人气:1

设数列an的前n项和为Sn,已知a1=1,(2Sn)/n=a(n+1)-1/3n^2-n-2/3,

两边同时加Sn Sn+1=(2+n)Sn/n+1/3n^2+n+2/3 根据一阶线性变系数差分方程的公式,该方程的通解为 Sn=[求和0到n-1(2x^2/3(x+1)(x+2)+2x/(x+1)(x+2)+4/3(x+1)(x+2))]*n(n+1)/2+Cn(n+1)/2 2x^2/3(x+1)(x+2)+2x/(x+1)(x+2)+4/3(x+1)(x+2)=2/3-(6x+4)/3(x+
    A+
热门评论