求齐次线性方程组{x1+x2+x3=0 x1+x2-x3=0 x3+x4+x5=0}的基础解系及通解
求齐次线性方程组{x1+x2+x3=0 x1+x2-x3=0 x3+x4+x5=0}的基础解系及通解
日期:2016-07-08 13:19:24 人气:1
写出系数矩阵
1 1 1 0 0
1 1 -1 0 0
0 0 1 1 1 r2-r1
~
1 1 1 0 0
0 0 -2 0 0
0 0 1 1 1 r2/(-2),r1-r2,r3-r2
~
1 1 0 0 0
0 0 1 0 0
0 0 0 1 1
R(A)=3,而方程有5个未知数,
所以有5-3=2个解向量
得到基础解系为
(1,-1,0,0,0)^T,(0,0,0,1,-1)^T
故通解为
a *(1,-1,0,0,0)^T+b *(0,