四边形ABCD中,CB=BA=AD,角ABC=168度,角BAD=108度。求角ADC的度数?
四边形ABCD中,CB=BA=AD,角ABC=168度,角BAD=108度。求角ADC的度数?
日期:2019-09-23 06:54:25 人气:2
应是30度. 以CD为边作正三角形CDF,交AD于E,连结AF、BF,
△ABC是等腰△,〈CAB=〈ACB=(180度-108度)/2=36度,
△BCD是等腰△,〈DBC=〈BDC=6度,
〈FCB=168度-60度=108度,
CF=FD=CD=BC=AB,
△FCB≌△ABC,
〈CFB=〈CAB,则A、B、C、F四点同在以BC为弦,圆周角为36度的圆上,
〈FAC=〈FBC=36度,
〈FAC=〈ACB=36度,
AF//BC,
四边形ABCF是等腰梯