设p,q为奇质数,且p=q+4a,证明:(a/p)=(a/q)
设p,q为奇质数,且p=q+4a,证明:(a/p)=(a/q)
日期:2019-08-15 14:35:57 人气:1
首先有以下引理:
若正整数a,m,x,y满足m | a^x-1,m | a^y-1,设d = (x,y) (最大公约数),则m | a^d-1.
证明:由裴蜀定理,存在正整数u,v使ux-vy = d.
由m | a^x-1,有m | a^(ux)-1 = a^(vy+d)-1.
又由m | a^y-1,有m | a^(vy)-1,故m | a^(vy+d)-a^d.
相减即得m | a^d-1.
回到原题,由q | a^p+1,有q与a互素.
q是素数,由Fer