已知非零实数a,b,c满足a^2+b^2+c^2=1,且a(1/b+1/c)+b(1/c+1/a)+c(1/a+1/b)=-3,求a+b+c的值
已知非零实数a,b,c满足a^2+b^2+c^2=1,且a(1/b+1/c)+b(1/c+1/a)+c(1/a+1/b)=-3,求a+b+c的值
日期:2008-08-16 17:06:07 人气:2
因为a(1/b+1/c)+b(1/c+1/a)+c(1/a+1/b)=-3
所以a(1/b+1/c)+b(1/c+1/a)+c(1/a+1/b)+3=0
a(1/a+1/b+1/c)+b(1/a+1/b+1/c)+c(1/a+1/b+1/c)=0
(a+b+c)(ab+bc+ca)/abc=0
若a+