设S1=1+1/1
设S1=1+1/1
日期:2013-07-09 17:42:19 人气:1
Sn=1+1/n^2+1/(n+1)^2=(n^4+2n^3+3n^2+2n+1)/(n^2*(n+1)^2)=(n*(n+1)+1)^2/(n^2*(n+1)^2)
故√Sn=√(n*(n+1)+1)^2/(n^2*(n+1)^2)=[n(n+1)+1]/[n(n+1)]
所以:
√S1=1+1-1/2
√S2=1+1/2-1/3
√S3=1+1/3-1/4
....
√Sn=1+1/n-1