设S1=1+1/1

日期:2013-07-09 17:42:19 人气:1

设S1=1+1/1

Sn=1+1/n^2+1/(n+1)^2=(n^4+2n^3+3n^2+2n+1)/(n^2*(n+1)^2)=(n*(n+1)+1)^2/(n^2*(n+1)^2) 故√Sn=√(n*(n+1)+1)^2/(n^2*(n+1)^2)=[n(n+1)+1]/[n(n+1)] 所以: √S1=1+1-1/2 √S2=1+1/2-1/3 √S3=1+1/3-1/4 .... √Sn=1+1/n-1&#
    A+
热门评论