已知二次函数y=ax2+bx+c(a≠0)的图象如图3所示, 下列结论:①abc>0 ②2a+b<0 ③4a-2b+c<0 ④a+c>0
已知二次函数y=ax2+bx+c(a≠0)的图象如图3所示, 下列结论:①abc>0 ②2a+b<0 ③4a-2b+c<0 ④a+c>0
日期:2016-12-01 20:13:48 人气:2
分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
解答:
解:
①:∵抛物线的开口方向向下,∴a<0,
∵抛物线与y轴的交点为在y轴的正半轴上,
∴c>0,
∵抛物线对称轴在y轴右侧,
∴对称轴为x=-b/2a>0,
又∵a<0,
∴b>0,
故abc<0;
故本选项错误;
②∵对称轴为x=-b/2a<1,a<0,
∴-b>2a,
∴2a+b<0;
故本