已知a,b,c为整数,且满足3+a2+b2+c2<ab+3b+2c,求(1 a +1 b +1 c )abc的值.

日期:2012-12-26 22:28:40 人气:1

已知a,b,c为整数,且满足3+a2+b2+c2<ab+3b+2c,求(1 a +1 b +1 c )abc的值.

解:由a、b、c均为整数,a2+b2+c2+3<ab+3b+2c,得 a2+b2+c2+3≤ab+3b+2c-1 ∴4a2+4b2+4c2+12≤4ab+12b+8c-4 (4a2-4ab+b2)+(3b2-12b+12)+(4c2-8c+4)≤0 (2a-b)2+3(b2-4b+4)+4(c2-2c+1)≤0 (2a-b)2+3(b-2)2+4(c-1)2≤0 ∴2a-b=0,b-2=0,c-1=0, 解得 a=1,b=2,c=1, ∴(1/a +1/b+1/c)
    A+
热门评论