已知三角形ABC中,角A,B,C的对边分别为a,b,c,a2+c2-b2=1/2ac,若b=2,求三角形ABC最大值
已知三角形ABC中,角A,B,C的对边分别为a,b,c,a2+c2-b2=1/2ac,若b=2,求三角形ABC最大值
日期:2012-08-26 21:38:37 人气:2
解:∵a²+c²-b²=(1/2)*ac
又余弦定理,有
cosB=(a²+c²-b²)/2ac
∴ (1/2)*ac=2ac*cosB
则 cosB=1/4
故 sinB=√15/4
∵a²+c²-b²=(1/2)*ac
∴a²+c