设f(x)在(0,+∞)上连续,且∫f(t)dt=x³=1,上限为x²,下限为0,则f(2)=? 求大神指教
设f(x)在(0,+∞)上连续,且∫f(t)dt=x³=1,上限为x²,下限为0,则f(2)=? 求大神指教
日期:2021-12-14 18:57:25 人气:1
解:
设不定积分 ∫f(t)dt 的原函数为F(t), 即:F‘(t) = f(t),则有:
[0,x²] ∫f(t)dt = F(x²) - F(0) = x³
两边同时对x 求导有:
F'(x²) * (x²)' = (x³)'
==> f(x²
设不定积分 ∫f(t)dt 的原函数为F(t), 即:F‘(t) = f(t),则有:
[0,x²] ∫f(t)dt = F(x²) - F(0) = x³
两边同时对x 求导有:
F'(x²) * (x²)' = (x³)'
==> f(x²