设a,b,c为三个非零向量,且向量a+向量b+向量c=0向量,|a|=2|b-c|=2,则|b|+|c|的最大值是?答案是2根号2
设a,b,c为三个非零向量,且向量a+向量b+向量c=0向量,|a|=2|b-c|=2,则|b|+|c|的最大值是?答案是2根号2
日期:2012-07-29 13:37:38 人气:2
解:
a+b+c=0
∴b+c=-a
∴|b+c|=|a|=2,
即:|b+c|=2
∴4=|b+c|²=(b+c)²=b²+2bc+c²
即:b²+2bc+c²=4
再由|b-c|=2可得:
4=|b-c|²=(b-c)²=b²-2bc+c²
即:b²-2bc+c²=4
上面两式相加,可得:
b²+c²=4
即: