设f(x)=(sinax+cosax)²+2cos²ax,(a>0)的最小正周期为π

日期:2012-06-03 21:34:10 人气:1

设f(x)=(sinax+cosax)²+2cos²ax,(a>0)的最小正周期为π

解:(1)f(x)=(sinax)^2+(cosax)^2+2sinaxcosax+2(cosax)^2=1+sin2ax+cos2ax-1=sin2ax+cos2ax=sin(2ax+π/4) 所以T=2π/2a=π,∴a=1 (2) 由图像向右平移得到F(x)=sin(2(x-π/2)+π/4)=sin(2x-3π/4) g(x)=sin(4x-3π/4) -π/2+2kπ<4x-3π/4<π/2+2kπ
    A+
热门评论