怎样求不定积分:∫(x^5+2x^2+1)/(x^3-x)dx

日期:2011-10-19 09:02:33 人气:1

怎样求不定积分:∫(x^5+2x^2+1)/(x^3-x)dx

原式=∫(x^2+1)dx+∫(2x^2+x+1)dx/(x^3-x) =x^3/3+x+(2/3) ∫d(x^3-x)/(x^3-x)+∫(x+5/3)dx/(x^3-x) =x^3/3+x+(2/3)ln|x^3-x|+∫dx/(x^2-1)+(5/3) ∫dx/[x(x+1)(x-1) =x^3/3+x+(2/3)ln|x^3-x|+(1/2)ln|(x-1)/(x+1)|+
    A+
热门评论