数学高手来挑战。涉及:柯西,基本……证明:(a-c)^2/a+(b-a)^2/b+(c-b)^2/c>=4(a-c)^2/3.

日期:2021-06-16 22:14:03 人气:1

数学高手来挑战。涉及:柯西,基本……证明:(a-c)^2/a+(b-a)^2/b+(c-b)^2/c>=4(a-c)^2/3.

从此醉_ ,你好:
证明之前,我先给出一个柯西不等式的推论,称之为柯西变式:a1^2/b1 +a2^2/b2+----+an^2/bn≥(a1+a2+a3+---+an)^2/(b1+b2+---+bn) 当且仅当a1/b1=a2/b2=----=an/bn时等号成立。
柯西不等式,你应该会证,是这样写的(x1^2+x2^2+---+xn^2)*(y1^2+y2^2+---+yn^2)≥(x1y1+x2y2+--
    A+
热门评论