已知数列{an},Sn是前n项的和,且满足a1=2,对一切n∈N*都有Sn+1=3Sn+n2+2成立,设bn=an+n.(1)求a2;

日期:2016-12-01 15:21:17 人气:1

已知数列{an},Sn是前n项的和,且满足a1=2,对一切n∈N*都有Sn+1=3Sn+n2+2成立,设bn=an+n.(1)求a2;

(1)∵a1=2,对一切n∈N*都有Sn+1=3Sn+n2+2成立,令n=1,可得 2+a2=3×2+1+2,求得a2=7.(2)证明:∵Sn+1=3Sn+n2+2,∴Sn=3Sn-1+(n-1)2+2,∴两式相见可得an+1=3an+2n-1,即an+1+(n+1)=3an+2n-1+(n+1)=3(an+n) ①.又bn=an+n,∴由①可得 bn+1=3(an+1+n)=3bn,∴数列{bn}是公比为3的等比数列.(3)由于b1=a1+1=3,故bn=3×3n-1=3n,∴1b1+1b3+…+1b2
    A+
热门评论