已知:如图,P是∠AOB平分线上的一点,PC⊥OA,PD垂直OB,垂足分别为C、D,求证;OP是CD的垂直平分线。
已知:如图,P是∠AOB平分线上的一点,PC⊥OA,PD垂直OB,垂足分别为C、D,求证;OP是CD的垂直平分线。
日期:2016-12-02 01:51:01 人气:2
证明:在△OCP与△ODP中
∵OP=OP,∠COP=∠DOP,∠PCO=∠PDO=90°
∴△OCP≌△ODP
∴OC=OD
设CD交OP于E点
则在△COE与△DOE中
∵OC=OD,∠COP=∠DOP,OE=OE
∴△COE≌△DOE
∴CE=DE ,∠CEO=∠DEO
又∵∠CEO+∠DEO=180°
∴∠CEO=∠DEO =90°
∵∠CEO=∠DEO =90°,CE=DE
∴OP是CD的垂直平分线