设f(x)=ax2+bx+c(a≠0),若|f(0)|≤1,|f(1)|≤1,|f(-1)|≤1,试证明:对于任意-1≤x≤1,有|
设f(x)=ax2+bx+c(a≠0),若|f(0)|≤1,|f(1)|≤1,|f(-1)|≤1,试证明:对于任意-1≤x≤1,有|
日期:2016-01-09 11:35:39 人气:1
证明:∵f(0)=c,f(1)=a+b+c,f(-1)=a-b+c∴a=12[f(1)+f(-1)]-f(0),b=12[f(1)-f(-1)],c=f(0)把它们代入到函数表达式里,再化简,得|f(x)|=|12[(x2+x)f(1)]+12[(x2-x)f(-1)]+(1-x2)f(0)|≤|x2+x2||f(1)|+|x2?x2||f(-1)|+|1-x2||f(0)|≤|x2+x2|+|x2?x2|+|1-x2|=|x2+x2|+|x2?x2|+1-x2,当x≤0时,|x2+x2|+|x2?x2|