设数列{xn}满足x1=π2,xn+1=sinxn,n=1,2,3,…,(1)试证明此数列极限存在,并求出limn→∞xn;(2

日期:2017-09-30 15:59:09 人气:1

设数列{xn}满足x1=π2,xn+1=sinxn,n=1,2,3,…,(1)试证明此数列极限存在,并求出limn→∞xn;(2

(1)证明:由归纳假设知,0<xn≤1,n=1,2,3,…,又xn+1=sinxn≤xn,由单调有界准则可知此数列极限存在;令a=limn→∞xn,则由xn+1=sinxn,得a=sina,故limn→∞xn=a=0;(2)解:∵limn→∞(xn+1xn)1x2n=limn→∞(sinxnxn)1x2n=limx→0(sinxx)1x2=elimx→0ln(sinxx)x2=elimx→0sinx?xx3=elimx→0cosx?13x2=e?16.
    A+
热门评论