求下列齐次线性方程组的一个基础解系和通解x1+x2-3x4=0,x1-x2-2x3-x4=0,4x1-2x2+6x3+3x4=0
求下列齐次线性方程组的一个基础解系和通解x1+x2-3x4=0,x1-x2-2x3-x4=0,4x1-2x2+6x3+3x4=0
日期:2021-01-21 19:35:51 人气:1
化简到最后阶梯形,第一行是1 1 0 -3 第二行是0 1 1 -1第三行0 0 4 3 令x4等于1为自由未知数,其它解出来是分数,同时乘4再配个系数就得到答案。
方程组同解变形为
x1=-2x3-x4
x2=x3-3x4
得基础解系 (-2, 1, 1, 0)^T, (1, 3, 0, -1)^T,
通解为 x =k(-2, 1, 1, 0)^T+c(1, 3, 0, -1)^T,
其中 k,c 为任意常数。
扩展资料:
当r=n时,原方程组仅有零解;
当r<n时,有无穷多个解(从而有非零解)