判断正项级数∑1/3^√n的收敛性
判断正项级数∑1/3^√n的收敛性
日期:2022-01-02 17:22:26 人气:1
利用高斯判别法,设a_n=1/3^(n^(1/2))
a_n/a_(n+1)=3^((n+1)^(1/2)-n^(1/2))=e^(((n+1)^(1/2)-n^(1/2))*ln3)
=1+ln3/((n+1)^(1/2)-n^(1/2))+o(n^(1/2))
>1+ln3/n
所以原级数收敛
a_n/a_(n+1)=3^((n+1)^(1/2)-n^(1/2))=e^(((n+1)^(1/2)-n^(1/2))*ln3)
=1+ln3/((n+1)^(1/2)-n^(1/2))+o(n^(1/2))
>1+ln3/n
所以原级数收敛