abc三个数的算术平均值,和他们的几何平均值大小 即证明 a+b+c/3≥(abc)的立方根

日期:2022-03-30 15:26:21 人气:1

abc三个数的算术平均值,和他们的几何平均值大小 即证明 a+b+c/3≥(abc)的立方根

只对正数证明,令x³=a.y³=b.z³=c.
x³+y³+z³-3xyz=(x+y+z)(x²+y²+z²-xy-xz-yz)
=(x+y+z)[(x-y)²+(y-z)²+(z-x)²]/2≥0.
即a+b+c-3(abc)^1/3≥0.(a
    A+
热门评论