解方程组1/(x+y)+1/(y+z)=3/2 1/(y+z)+1/(z+x)=5/6

日期:2022-03-25 23:22:12 人气:1

解方程组1/(x+y)+1/(y+z)=3/2 1/(y+z)+1/(z+x)=5/6

令x+y=m,y+z=n,z+x=k,则方程组变换成:
1/m+1/n=3/2
1/n+1/k=5/6
1/k+1/m=4/3
解得:
m=1
n=2
k=3
接着计算:
x+y=1
y+z=2
z+x=3
解得:
x=1
    A+
热门评论