等差数列{a n }的首项为a,公差为d;等差数列{b n }的首项为b,公差为e,如果c n =a n +b n (n≥1),且

日期:2016-05-12 21:08:07 人气:2

等差数列{a n }的首项为a,公差为d;等差数列{b n }的首项为b,公差为e,如果c n =a n +b n (n≥1),且

由等差数列的通项公式可得,a n =a+(n-1)d,b n =b+(n-1)e∴c n =a n +b n =a+b+(n-1)(e+d),则数列{c n }是以a+b为首项以e+d为公差的等差数列∵c 1 =4,c 2 =8.∴ a+b=4 a+b+e+d=8 ,解可得,a+b=4,e+d=4∴c n =4+(n-1)×4=4n故答案为:4n
    A+
热门评论